Chlorophyta (klo-RA-fa-ta) is formed from two Greek roots that mean green (chloros -χλοερός); and plant (phyto -φυτό).  The reference is to the typical color of members of the phylum.


This phylum includes most of the green algae, which may grow as colonies, unicells, filaments, and large seaweeds (Figures A-O).  Indeed, their diversity rivals that of the Phaeophyta and the Rhodophyta.  They occur in almost all types of water and often are dominants in freshwater environments.  Their life histories are as varied as their forms.  In general, they exhibit the standard plant alternation of sporophyte-gametophyte generations (isomorphic to heteromorphic alternation).  Some have truncated their life histories such that they are haploid with zygotic meiosis (haplontic life history), or diploid with gametic meiosis (diplontic life history).  The diplontic taxa generally are among the siphonaceous pseudoparenchymatous seaweeds (Figures K-M).  Within each type of sexual life history taxa vary from isogamy to anisogamy to oogamy.  Indeed, all three can be found in the genus Chlamydomonas. This suggests that oogamy (if it is derived) has evolved multiple times within the green algae.   In general, the sexual cycle serves to produce zygospores that form resting cysts.  Most of the reproduction is vegetative (mitosis, usually accompanied by fragmentation) or asexual (by the formation of zoospores, aplanospores, daughter colonies, etc.).

The green algae are of three types, each of which presented below as two classes: Chlorophyceae and Ulvophyceae.  The Chlorophyceae includes taxa that are unicellular, filamentous or colonial.  There are two subgroups of this class known as the DO (directly opposed basal bodies) clade and the CW (clockwise arrangement of basal bodies) clade.  Flagella tend to be smooth (non-scaly), and their flagellar roots run in periphery of cell.  Generally, their life histories are haplontic.  I represent them here by Pediastrum, Hydrodictyon, Volvox, Chlamydomonas, and Oedogonium.

Colonial taxa are multicellular and quite distinctive in their appearance.  Pediastrum (Figure A) and Hydrodictyon form such distinctive colonies.  Hydrodictyon forms its colonial net bag of cells that join mostly in hexagons.  While in the colonial form the organism cannot form new cells for the colony.  Instead, the nuclei within any one cell accrete cytoplasm and differentiate into a biflagellate zoospore.  In the case of Hydrodictyon, this could be hundreds of zoospores, which do not leave the parent cell but swim to arrange themselves into a tiny bag of hexagonally-associated cells.  This autocolony then emerges from the parent cell in the asexual cycle.  At the induction of the sexual cycle, cells that resemble zoospores emerge from the parent cell and function as isogametes.  They fuse with gametes from a compatible mating type and form a zygote.  These have zygotic meiosis and, therefore, have a haplontic life history. This zygospore is the resting cyst that germinates when the environment again becomes amenable [See the life history of Hydrodictyon].  I have observed Hydrodictyon in abundance growing in relatively clean streams that have running water.

Volvox (Figure B), in contrast to Hydrodictyon, is a motile colony of delicate green spheres of up to more than 1,000 cells, each with a cup-shaped chloroplast and a pair of flagella.  Typically, they occur in shallow ponds among vegetation, where turbulence cannot tear them apart.  In the asexual cycle, specialized cells begin to divide and form a hollow ball of cells, the requisite number for the mature colony.  Like Hydrodictyon, a mature colony of Volvox cannot increase in size by adding more cells.  The developing daughter colony then turns inside out because during the mitotic phase, the flagellar ends of the cells were directed inwards.  Fully formed, the daughter colonies roll around inside the cavity of the parent colony until the parent tears and released them.  The sexual cycle is oogamous.  Certain cells on the colony become enlarged and, therefore, functional eggs.  Others make very small elongate motile sperm that swim as a group until they encounter an egg.  The zygotes, which look like spiked balls, also remain on the inside of the parent colony until they are released.  Like Hydrodictyon, meiosis occurs inside the zygospore, which is the resting stage [See the life history of Volvox].

Chlamydomonas (Figure C) looks like a unicell of Volvox, and they occur in almost all aquatic environments with low levels of turbulence.  They are small motile cells that divide within the old parent wall and emerge (as zoospores).  The individual cells can serve as functional gametes which fuse at the flagellar ends.  Zygotes are similar to those of Volvox [See the life history of Chlamydomonas].  Chlamydomonas, when suddenly presented with an environmental difficulty, can withdraw the flagella and surround the nonmotile cell with a gelatinous layer (called a palmella stage), in which form phycologists generally refer to them as LGB (little green balls).  The Chlamydomonas form seems to have evolved multiple times according to molecular evidence.  Thus, the genus will be fragmented into multiple taxa in several different orders.  Dunaliella (Figure D) is a unicell like Chlamydomonas, but, because it lives in highly saline environments, it requires almost no cell wall.

Oedogonium (Figure F) is an branched filament that occurs commonly in periphyton communities of freshwater environments.  Even though they live as simple filaments, there is a degree of specialization.  The bottom cell differentiates as a holdfast.  Certain cells in the filament can divide.  In this (and other filaments), the parent cell wall is conserved; however, in Oedogonium, the dividing cell causes the cell wall to separate as a cap at the apex and most of the wall goes to the non-dividing daughter cell.  As the cell divides over time, the caps stack at the apex in a distinctive way.  Certain cells in the filament can develop zoospores (asexual reproduction), which are relatively large cells with an antapical ring of paired flagella.  Sexual reproduction is quite distinctive in this group.  It is always oogamous, but the way in which the antheridia are formed can vary according to two types: macandrous and nannandrous antheridia.  In macandrous reproduction, the male filament makes smaller cells on an otherwise vegetative filament.  Within the small cells two sperm are formed, swim out and fertilize an enlarged oogonium through a port in its wall.  Nannandrous taxa have two stages in the formation of the antheridia.  First, they form the macandrous-like cells in which two small zoospores are formed.   The zoospores escape their cell walls and attach on the oogonial filament, either on the oogonium or on a cell joining it (this is species specific).  The small zoospore germinates to form a dwarf filament (called a dwarf male) with a holdfast, a vegetative cell, and a terminal antheridium.  The oogonium surrounds itself and the developed dwarf males with a mucilage sphere.  Fertilization occurs and the zygote becomes the resting spore.  Meiosis occurs within the zygote, which, upon germination, releases zoospores to begin the cycle [See the life history of Oedogonium]. 

Most taxa of the Ulvophyceae are marine, but some occur in abundance in freshwater habitats.  They can range from uninucleate to multinucleate filaments to siphonaceous forms to giant unicells.  The green seaweeds, most of which are diploid in the vegetative state, belong to this class. Basal bodies are cruciate and occur in a counter clockwise displacement. Members of this group can exhibit alternation of haploid and diploid generations or have a dominant diploid generation.  Rarely are they haplontic.  I represent them here by Ulva, Cladophora, Codium, and Acetabularia.

Ulva (Figure H), known as sea lettuce, is a common member of the attached seaweed community attached to rocks and jetties in the turbulent wave zone of warm temperate marine environments.  They form a broad, flat thallus, usually two cells thick.  Despite the filmy appearance, Ulva is quite tough and survives well in zones of pounding  waves.  They exhibit an isomorphic alternation of generation (i.e. the haploid thalli look like the diploid thalli).  In the sexual cycle, gametophyte plants form gametangia in which biflagellate gametes are formed.  They are anisogamous; so, a larger gamete fuses with a smaller one to form a zygote that begins to develop into a diploid vegetative thallus, the sprorphyte.  Certain cells in the sporophyte form zoosporangia in which meiosis occurs and haploid quadriflagellate zoospores are formed and released to give rise to the gametophyte generation [See the life history of Ulva].

Cladophora (Figure J) is a branched filament that occurs in turbulent water, mainly freshwater.  The branches occur at the distal ends of of the cells, which have up to 50 nuclei and a large parietal net chloroplast.  They can grow quite profusely when conditions are right.  Cladophora glomerata "bloomed" in places like Lake Erie in response to phosphate enrichment.  Their abundance meant the "death" of Lake Erie until laws limiting the phosphate load brought about their control.  In central Pennsylvania, during warm periods of exceptional low flow, I have seen Cladophora overwhelm the periphyton community with strands that can grow to more than a half meter long.  Despite the appearance of slimy strands, Cladophora mats are rough to the touch because they do not produce mucilage but rather deposit lime in the cellulose strands of the wall.  The life history is very similar to that of Ulva.  Many, but not all, exhibit isomorphic alternation of generation with biflagellate isogametes and quadriflagellate zoospores [See the life history of Cladophora].

Codium (similar to Caulerpa, Figure K) can, according to the species, appear as small upright shrubs, spheres or flattened blades.  They all are formed from interwoven siphonaceous filaments (pseudoparenchymatous thallus) with the periphery textured by minute attenuate branches bearing gametangia and hairs.  The seaweed is diploid with meiosis occurring during gametogenesis.  The anisogametes are both motile and biflagellate, but they differ very much in size.  Species of Codium and Caulerpa have been implicated as noxious invasive taxa, and they threaten local marine coastal communities where they have been established (e.g. California, eastern US, Australia, and the Mediterranean Sea) [See the life history of Codium].

Acetabularia is  a single attached giant cell that develops gametangial rays at the top.  The organisms are almost colorless; so, the overall appearance is that of a very delicate wine cup (thus, the common name, Venus' Wine Cup; see Figure N).   I have seen these growing in Texas gulf coastal water on submerged rocks such that they made an almost continuous lawn.  The upright cell develops from a zygote that attaches and elongates.  The cell remains diploid, but the single nucleus becomes gigantic.  Then, gametangial rays begin to form at the top of the cell.  The nucleus undergoes meiosis and then divides repeatedly to form thousands of haploid nuclei that migrate to the gametangial rays.  There, they accrete cytoplasm and form haploid cysts (the attenuate gametophyte), which undergo more mitotic divisions to make about 20 haploid nuclei.  The rays, each with many cysts, release the cysts to the environment.  The cysts may take many weeks to mature and develop biflagellate gametes, which then leave the cysts through a lid-like operculum.  The zygote is formed by the fusion of the isogametes [See the life history of Acetabularia].

The Trebouxiophyceae is a third group of green algae, and it lives primarily in the soil.  Its mitosis is distinctive in that centrioles position themselves at the sides of the spindle, a process called metacentric mitosis, which is considered to be a derived state from mitosis with polar centrioles.  Members of this class range from unicells to small filaments and sheets of cells.  Many of them occur as the phycobionts in lichens.  Sexual reproduction in the group is quite variable.  In motile cells (zoospores and motile gametes), the basal bodies occur in a counter clockwise displacement.


In this system, the Chlorophyta as a phylum is much abbreviated from systems like those of Margulis and Schwartz (1998).  Bold and Wynne (1985) present a very conservative classification scheme that is little changed from that of Smith (1950) and ignores the vast body of ultrastructural data that have accumulated over the past three decades (Pickett-Heaps and Marchant 1972; Pickett-Heaps 1975; and Mattox and Stewart 1984). Molecular evidence indicates that the phylum as indicated in this system is monophyletic with three large clades, each interpreted as a class  (Graham and Wilcox 2000; Van den Hoek et al. 1995).   The classes also correlate with some details of mitosis and cytokinesis (persistent telophase spindle as a phycoplast, occurrence and placement of centrioles, type of cytokinesis; van den Hoek et al. 1995).  A curious outcome of the molecular and ultrastructural work is that the morphology of the taxa is enormously variable.  For example, motile unicells, branched filaments, sheets of cells, and pseudoparenchymatous thalli seem to have evolved numerous times.  Some of them are so similar that they have been treated as sibling species in genera like  Chlamydomonas and Chlorella.  Similarly, oogamy seems to have evolved repeatedly as well.

pediastrum (200x).jpg (745515 bytes)

A. Pediastrum is a plate-like colony of nonmotile cells.

volvox-marietta.jpg (17602 bytes)

B. Volvox is a motile colony of hundreds of cells.  The larger dark spots inside the colonies are developing daughter colonies.

Chlamydomonas.jpg (4784 bytes)

C. Chlamydomonas is a motile unicell that resembles an individual cell of Volvox.  Note the cup-shaped chloroplast and pair of flagella.

D. Dunaliella resembles Chlamydomonas in form.  This organism has almost no cell wall and lives in environments with high salt concentrations.

chaetophora-hosei.jpg (27324 bytes)

E. Chaetophora is a highly branched filament that produces a thick layer of mucilage around it.  The chloroplasts are parietal rings.

Oedogonium-mtu.jpg (47908 bytes)

F. Oedogonium is an unbranched filament with only certain cells that can divide.  Those that do divide have stacks of old cell walls (called apical caps) at the cell apex.

ULOTHRIX-mtu.jpg (180178 bytes)

G. Ulothrix is an unbranched filament that has parietal ring chloroplasts.

ulva-uri.jpg (13806 bytes)

H. Ulva, commonly called Sea Lettuce has a growth habit that resembles that of the red alga, Porphyra.

trentepohlia400xlmp-wisc.jpg (50778 bytes)

I. Trentepohlia is a branched filament that is subaerial.  Note the gametangium at the terminus of the main filament. 

Cladophora-wisc.jpg (45875 bytes)

J. Cladophora is a branched filament of multinucleate cells.  The cells branch at the apex of the cell.  The chloroplast is a parietal network.

Caulerpa-umces.jpg (37486 bytes)

K. Caulerpa is a siphonaceous pseudoparenchymatous organism that has become an exotic pest in some coastal areas.

halimeda_small-uni-hamburg.jpg (84997 bytes)

L. Halimeda like Caulerpa is pseudoparenchymatous.  It resembles the red alga, Corallina in its appearance and growth habit.

penicillus-gpc.jpg (6784 bytes)

M. Penicillus is another pseudoparenchymatous organism.  Called Neptune's Shaving Brush, it grows anchored in sand.

acetabularia-uca.jpg (30994 bytes)

N. Acetabularia is a beautifully delicate plant that develops gametangial rays at the top.  It is called Venus' Wine Cup. Plants may be partially calcified. Each "stem" and "cup" is actually a single large cell.

trebouxia-hosei.jpg (40587 bytes)

O. Trebouxia is a soil alga that often becomes the phycobiont in lichens.

Images taken from:
A,C: The Systematic Biology Biodiversity Collection


The following description comes from Margulis and Schwartz (1998),  Bold and Wynne (1985), Graham and Wilcox (2000), and van den Hoek et al. (1995).

I. SYNONYMS: Green algae, chlorophytes, chlorophyceans.

II. NUMBER: >8,000 species


A. Structure and Physiology

Cell Form: Unicells, coenobia, filaments, parenchymatous, siphonous, colonies.

Flagella: Two flagella (or in pairs), both whiplash or with sparse hairs or scales and anteriorly directed.

Basal Bodies: Basal bodies opposite, clockwise or counterclockwise in orientation with cruciate flagellar roots.

Cell Covering: Usually a wall of cellulose.

Chloroplasts: Variable; grass green with chlorophylls a and b, B-carotene and various xanthophylls. Eyespot, when present, is always enclosed within the chloroplast.

Food Reserves: True starch that is deposited within the chloroplast in association with a pyrenoid.

Mitochondria: Plate-like cristae.

Golgi: Present.

Nucleus: Usually haploid in vegetative forms however this varies.  The siphonaceous greens are often diploid in the vegetative state.

Centrioles: Centrioles in some.  Centrioles polar in Chlorophyceae and Ulvaphyceae.  Metacentric in Trebuxiophyceae.

Inclusions and Ejectile Organelles: Not present.

B. Mitosis, Meiosis and Life History

Mitosis: Variable, mostly closed; usually persistent telophase spindle a phycoplast.  Cytokinesis by furrowing to cell plate formation.

Meiosis: Present.

Sexual Reproduction and Life History:

Varied; isogamy, anisogamy to oogamy. Oogamy seems to have evolved more than once in this phylum.
Life Histories of:
Hydrodictyon haplontic, isogamous, daughter colonies (autocolonies)
Volvox haplontic, oogamous, daughter colonies (coenobia)
Chlamydomonas haplontic, isogamy to oogamy, zoospores.
Oedogonium haplontic, oogamy, zoospores, fragmentation
Ulva isomorphic alternation of generation, isogamy, zoospores
Cladophora haplontic (at least one species has isomorphic alternation of generation), isogamy, zoospores, fragmentation
Codium diplontic, anisogamy
Acetabularia modified heteromorphic alternation of generation, isogamy

C. Ecology: Freshwater, brackish water, marine environments, soil, parasites, phycobionts of fungi.


This system is a work in progress and comes from Graham and Wilcox (2000) and  van den Hoek et al. (1995).


There are two subgroups of this class known as the DO (directly opposed basal bodies) clade and the CW (clockwise arrangement of basal bodies) clade.  Flagella non-scaly; flagellar roots run in periphery of cell; usually haploid, but alternation of haploid and diploid generations in some; morphology varied. This class has 5 orders.


These range from unicells to coenobial colonies to multinucleate filaments (Sphaeroplea).  Some do not produce motile cells (and therefore cannot be confirmed as DO) but are related to other taxa as confirmed by molecular phylogeny.  

Ankistrodesmus, Bracteacoccus, Pediastrum, Hydrodictyon, Scenedesmus, Coelastrum, Tetraedron, Sphaeroplea


This is a large, diverse group that seems to have 3 well-defined clades:

1. the volvocine clade: Vegetative stages flagellated or coenobia; some non-flagellated pallemloid colonial forms whose vegetative cells have pseudocilia (9+1); gametes and zoospores normally biflagellate. (formerly the orders Volvocales and Tetrasporales)

Volvox, Chlamydomonas (some), Dysmorphococcus, Carteria, Chlorogonium, Polytoma, Haematococcus, Phacotus, Pteromonas, Gonium, Pandorina, Platydorina, Pleodorina, Eudorina;: Tetraspora, Gloeococcus, Palmella, Gloeocystis, Hormotila, Paulschulzia, Apiocystis.

2. the tetracystis clade: This group includes some unicellular non-motile forms formerly in the order Chlorococcales.

Chlorococcum (some), Tetracystis.

3. the dunaliella clade: This contains some of the Chlamydomonas species (now recognized as a paraphyletic genus), some nonmotile coccoid taxa (some species of Chlorococcum), and some coenocytic taxa.

Haematococcus, Chlamydomonas (some), Stephanosphaera, Dunaliella, Chlorococcum (some), Botryococcus, Oocystis, Planktosphaeria, Micractinium, Kirchneriella, Sphaerocystis, Dictyosphaerium, Dimorphococcus, Selenastrum, Protosiphon, Characiosiphon.


Unicellular green algae which can undergo vegetative cell division (as well as the production of zoospores); soil algae.

Chlorosarcina, Pseudotetracystis, Borodinellopsis, Borodinella, Axilosphaera, Planophila.


Branched filaments; long hairs or setae at the ends of some cells; biflagellate zoospores and gametes.

Chaetophora, Uronema, Microspora, Stigeoclonium, Draparnaldia, Draparnaldiopsis, Fritschiella, Microthamnion, Protoderma, Gongrosira, Aphanothece.


Filamentous; cells uninucleate and have complex method of cell division (cell cap formation); haploid with zygotic meiosis; oogamous; flagellated zoospores and sperm bear ring of numerous flagella. 

Oedogonium, Bulbochaete, Oedocladium.


Most are marine, but some occur in abundance in freshwater habitats.  These range from uninucleate to multinucleate filaments to siphonaceous forms to giant unicells.  The green seaweeds, most of which are diploid in the vegetative state, belong to this class. Basal bodies are cruciate and occur in a counter clockwise displacement.   However, there seem to be no real synapomorphies for this class. Thus, van den Hoek (1995) advocated raising the subgroups to class status. I have taken a more conservative stance. This class has 6 orders.

ORDER ULOTRICHALES (contains taxa of orders Ulotrichales and Codiolales from older systems).

Filaments of uninucleate to multinucleate cells.  Some a sheet of a single layer of uninucleate cells.  Commonly, members of this order have a stage of their life history that is unicellular, club-shaped, attached and stalked (this usually is assumed to be the zygote).

Ulothrix, Urospora, Spongomorpha, Acrosiphonia, Monostroma, Geminella, Stichococcus, Cylindrocapsa.


Parenchymatous; often a flat expanded sheet, hollow tube or solid cylinder; asexual reproduction by flagellated zoospores; sexual life history isomorphic alternation of generation with biflagellate gametes.

Ulva, Enteromorpha, Percursaria, Ulvaria, Trichosarcina, Prasiola.


These branching filaments differ from the CHAETOPHORALES because the TRENTEPOHLIALES produce specialized gametangia and zoosporangia. Terrestrial or parasites of plants.  Some are the phycobionts of lichens.

Trentepohlia, Cephaleuros.


Branched filaments, pseudoparenchymatous blades, nets or spherical vessicles; always of multinucleate cells; reproduction by flagellated zoospores and gametes; alternation of haploid gametophyte and diploid sporophyte generations; cell walls thick and rough.

Cladophora, Rhizoclonium, Chaetomorpha, Pithophora, Basicladia, Anadiomene, Siphonocladus, Dictyosphaeria, Valonia, Sphaeroplea.


Branched siphonaceous organization, some multiaxial or pseudoparenchymatous; diploid with alternation of haploid and diploid generations with flagellated gametes or diploid with gametic meiosis and oogamy.

Bryopsis, Pseudobryopsis, Derbesia, Caulerpa, Udotea, Codium, Halimeda, Penicillus, Dichotomosiphon.


Thallus complex with radial symmetry, sometimes bladder-like or umbrella-like; cell wall of cellulose but may become calcified; diploid with gametic meiosis.

Acetabularia, Batophora, Cymopolia.


Centrioles position themselves at the sides of the spindle in these taxa.  This is called metacentric mitosis and is considered to be a derived state from mitosis with polar centrioles.  These range from unicells to small filaments and sheets of cells.  Many of these occur as the phycobionts in lichens.  Sexual reproduction is equally varied.  Basal bodies in a counter clockwise displacement.  (from Friedl 1995;  Graham and Wilcox 2000; and Van den Hoek et al. 1995).  


Myrmecia, Trebouxia, Dictyochloropsis, Chlorella, Nanochlorum, Prototheca, Stichococcus, Golenkinia, Eremosphaera, Microthamnion.


Bold, H. C. and M. J. Wynne. 1985. Introduction to the Algae. 2nd Edition. Prentice-Hall, Inc. Englewood Cliffs. NJ. 

Bold, H. C., C. J. Alexopoulos, and T. Delevoryas. 1987. Morphology of Plants and Fungi. 5th Edition. HarperCollins Publishers, Inc. New York. 

Friedl, T. 1995. Inferring taxonomic positions and testing genus level assignments in coccoid green lichen algae: a phylogenetic analysis of 18S ribosomal RNA sequences from Dictyochloropsis reticulata and from members of the genus Myrmecia (Chlorophyta, Trebouxiophyceae Cl. Nov.). Journal of Phycology. 31:632-639. 

Graham, L. E., and L. W. Wilcox. 2000. Algae. Prentice Hall, Upper Saddle River, NJ.

Margulis, L. and K. Schwartz. 1998. Five kingdoms, an illustrated guide to the phyla of life on earth. 3rd Edition. W. H. Freeman and Company.  New York. 

Mattox, K. R. and K. D. Stewart. 1984. Classification of the green algae: a concept based on comparative cytology. In:  Irvine  , D. E. G. and D. M. John, eds. Systematics of the Green Algae. Academic Press. London. pp. 29-72.

Pickett-Heaps, J. D. 1975. Green Algae: Structure, Reproduction and Evolution in Selected Genera. Sinauer Associates, Inc. Sunderland , Massachusetts.

Pickett-Heaps, J. D. and H. J. Marchant. 1972. The phylogeny of the green algae: a new proposal. Cytobios. 6:255-264.

Smith, G. M. 1950. The fresh-water algae of the United States . McGraw-Hill Book Co. New York

Van den Hoek, C., D. G. Mann, and H. M. Jahns. 1995. Algae, An Introduction to Phycology. Cambridge University Press.  Cambridge.

By Jack R. Holt.  Last revised: 03/21/2010